Discrete Quantum Optics

Dr. Armando Perez-Leija and Prof. Dr. Kurt Busch M.Sc. Paraschos Varytis

WiSe 2017/18, Set 2
8. November 2017

1. Show that the eigenvectors of a linear operator \hat{A} are linearly independent.
2. Show that $(\hat{A}+\hat{B})^{\dagger}=\hat{A}^{\dagger}+\hat{B}^{\dagger}$, and $(\hat{A} \hat{B})^{\dagger}=\hat{B}^{\dagger} \hat{A}^{\dagger}$.
3. Show that a projector operator \hat{P} is Hermitian and can be inverted if and only if $\hat{P}=I$, where I is the identity operator.
4. Show that the standard Pauli matrices σ_{x}, σ_{y}, and σ_{z} are Hermitian and unitary.
5. Let be $|+\rangle=\frac{1}{\sqrt{2}}\binom{1}{1}$ and $|-\rangle=\frac{1}{\sqrt{2}}\binom{1}{-1}$, write down the Pauli matrices in the basis

6. Show that if the operators \hat{A} and \hat{B} are Hermitian, then $\mathrm{i}[\hat{A}, \hat{B}]$ is also Hermitian.
7. Show that any unitary operator \hat{U} can be written as $\hat{U}=\exp (\mathrm{i} \hat{A})$, where \hat{A} is a Hermitian operator.
8. Consider the Hamiltonian $\hat{H}=\binom{\beta \kappa}{\kappa \beta}$, compute the evolution operator $\hat{U}(t)=\exp (-\mathrm{i} t \hat{H})$ using (i) the spectral decomposition and (ii) expanding the exponential in Taylor series.
9. Given the operator momentum operator $\hat{p}=-\mathrm{i} \frac{\partial}{\partial x}$, show that the commutator $[\hat{x}, \hat{p}]=\mathrm{i}$.
10. Show the identities:

- $\exp \left(\frac{\mathrm{i} \hat{p}^{2}}{2}\right) h(\hat{x}) \exp \left(\frac{-\mathrm{i} \hat{t} \hat{p}^{2}}{2}\right)=h(\hat{x}+t \hat{p})$
- $\exp \left(\frac{\mathrm{i} u(\hat{x}+t \hat{p})}{2}\right)=\exp \left(\frac{\mathrm{i} t u^{2}}{2}\right) \exp (\mathrm{i} u \hat{x}) \exp (\mathrm{i} t u \hat{p})$
- $\exp \left(\frac{\mathrm{i} \hat{p}^{2}}{2}\right) \exp (\mathrm{i} v \hat{x})=\exp \left(\frac{\mathrm{i} t v^{2}}{2}\right) \exp (\mathrm{i} v \hat{x})$
- $\exp (\mathrm{i} t u \hat{p}) \exp (\mathrm{i} v \hat{x})=\exp (\mathrm{i} t u v) \exp (\mathrm{i} v \hat{x})$
- $\exp \left(\frac{\mathrm{i} \hat{\hat{p}^{2}}}{2}\right) \exp \left(\frac{-\mathrm{i} \hat{\hat{x}^{2}}}{2 \sigma^{2}}\right) \exp \left(\frac{-\mathrm{i} \mathrm{t} \hat{p}^{2}}{2}\right)=\exp \left[\frac{-\left(\hat{x}^{2}+(\hat{x} \hat{p}+\hat{p} \hat{x})+t^{2} \hat{p}^{2}\right)}{2 \sigma^{2}}\right]$

11. Consider the spectral decomposition of the Fourier operator $\hat{F}_{\alpha}=\sum_{n=0}^{\infty}\left|\varphi_{n}\right\rangle\left\langle\varphi_{n}\right| \exp (\mathrm{in} \alpha)$, where $\left|\varphi_{n}\right\rangle$ represents a normalized Hermite-Gauss polynomials of order n.
Using matlab or mathematica, maple, etc, to apply such a Fourier operator with $\alpha=\frac{\pi}{2}, \frac{\pi}{4}$ to a rect function defined as $\Pi(x)=\left\{\begin{array}{lll}0 & \text { if } & |x|>1 \\ 1 & \text { if } & |x|=1 \\ 0 & \text { if } & |x|<1\end{array}\right.$.
