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1. Consider a quantum system initially prepared in a number state |¥(0)) = |k), governed
by the hamiltonian H = (dT + &), that is, a system with a Hamiltonian proportional to
the z operator, T (&T + d).

In order to solve the Schrodinger equation

0
2 W) = H|¥(), ()
we start by expanding the state vector |¥(¢)) in terms of number states

Z |m) (m|¥(t) Z Con(t) (2)

where we have defined C,(t) = (m|¥(t)) = (m|U(t) |k). Substituting expansion (2)
into the Schrodinger equation yields

8052@) m) = > C(t)al [m) + > Cn(t)i|n). (3)

m=0 m=0

Since a' [m) = v/m + 1|m + 1) and a|m) = \/n|m — 1) we have

aO Zc OV 1 m + 1) +Zc Ovmlm—1). ()

m=0

Multiplying to the left by (n| we obtain

8(}' ZC’ vVm + 1 {n|m + 1) +ZC ()vm(nlm —1). (5)

n=0 m=0

Using the orthogonality relation (n|m) = §,,m, Eq. (5) reduces to

9Cn(t)

BN = VmCp1(t) + Vm + 1Cp 44 (). (6)




Or in matrix form
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Instead of solving the set of coupled differential equation (6), it is easier to compute
Cy(t) directly from the formal solution of the Schrédinger equation

W (t)) = exp (—it (&' +a)) |k) . (7)

Since [d, &T] = 1, we can use the Baker-Campbell-Hausdorff formula to split the expo-
nential operator

exp (—it (' +a)) = exp (—%) exp (—ita') exp (—ita) . (8)

Therefore, we have

(1)) = exp (-%) exp (—ita") exp (—ita) |k). ()
Since Cy,(t) = (m|¥(t)) = (m| U(t) |k), we have to multiply Eq. (9) to the left by (m|
Cn(t) = exp (—%) (m|exp (—ita") exp (—ita) |k) . (10)

We now use the Taylor expansions

2 (—it)! L (—it)! !
esp (-t 1) = > T @y =S E Rk ay

and

(m|exp (—ita') = Z (=it

to write Eq. (10) as

12\ <u & —it)™(—it) m! k!
C’m(t):exp( )le \/(m—n)(k—l)< —nlk—=1). (13)

n=0

Notice that the orthonormality condition, (m —n|k — 1) = 6,,—, k—i, allows us to take
n=m+1[—k, and as a result Eq. (13) reduces to

2\ & —it)2 (—it)m* m! k!
Cm(t)zexp( )Z m+l— l!\/(m—n) T 14

=0




(k+s)!

sy We obtain

Moreover, taking m = k 4+ s and multiplying by

2

t k+s)
C(t) = exp <_§) (=it)’ k:+s Z I l+s ) (1)

From this expression we identify the associated Laguerre polynomials

k
k—|—3)
Ly(#?) = 1
ZZ I l+s T (16)
And Eq. (15) becomes
Cn(t)=e e (—it)* ai Li(t*) for m=k+s (17)
— eX _— — — .
m P\72 (k+ ) *

Since this expression is valid for m = k + s, we can take s = m — k to obtain

Con(t) = exp (—§> (—it)m’“\/%Lg”“(tz) for — m >k (18)

Starting again from Eq. (13), and using the orthonormality condition (m —n|k — 1) =
Om—n,k—1 We now take [ = n + k —m to get rid of the sum in /. Then, taking m =k — s

and multiplying by /% we obtain

() = exp (-%) (—ityy = Nre ) for m=k-s  (19)

Finally, taking s = k — m yields

C(t) = exp (—?) (—it)km\/gLﬁlm(tQ) for  m <k (20)

Collecting both parts of the solution we have the analytical expression for the probabi-
lity amplitudes C,,(t)

Cm(t):exp< tQ) ; (—it)k‘m\/g[/;‘m(ﬂ) for  m <k o

|
(—it)™ k4 / %L?‘k(ﬂ) for m > k.

This expressions describe how the different states |m) will be populated when the system
starts in a number state |k). The next step is to write a Matlab script to solve the
system of coupled differential equations (6) using the Runge-Kutta method. In doing
so consider m = 0, ..., 50 and the initial states |k) = |0),|2), |5), compare the analytical
and numerical solutions.
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