We investigate theoretically the optical properties associated to plasmon resonances of metal nanowires with cross section given by low-order Chebyshev nanoparticles (like rounded-tip nanostars or nanoflowers). The impact of the nanoflower shape is analyzed for varying symmetry and deformation parameter through the spectral dependence of resonances and their corresponding near field distributions. Large field intensity enhancements are obtained at the gaps between petals, apart from the tips themselves, which make these nanostars/nanoflowers specially suitable to host molecules for surface-enhanced Raman scattering sensing applications.