Using a rather large set of different individual metallic optical antennas, we compare directly measured electron energy-loss spectra with measured quantitative optical extinction and scattering cross-section spectra on the identical antennas. All antenna resonances lie near 1.4 µm wavelength. In contrast to other reports, we find identical resonance positions for electrons and photons to within the experimental errors. We discuss possible artifacts which can lead to seemingly different resonance positions in experiments.
Titania woodpile photonic crystals are fabricated by a combination of stimulated-emission depletion direct laser writing and a novel titania double-inversion procedure. The procedure relies on atomic-layer deposition, which is also used to fine-tune the template geometry to maximize the gapsize. Angle- and polarization-resolved transmittance spectroscopy and a comparison with theory provide evidence for the first complete photonic bandgap in the visible.
Subscribe to RSS - nanophotonics